Posts Tagged ‘HVPE’

Matt Margolis -2/18/14

Kyma Technologies Background: Kyma Technologies was founded in 1998 and is located in Raleigh, NC.  Annual revenues are estimated at approximately $3m per year and they have 17 employees.   Kyma Technologies has managed to survive over the last 16 years through various venture capitalists funds raisers as well as several relatively small contracts awarded to them.  In 2003, Kyma received $1.4M from GE Technology Finance in the form of a line of credit to build out their gallium nitride substrates business.  Later in 2003, Kyma received $4m of Series B (venture capitalist money), which included support from Digital Power Capital and Siemens Venture Capital.  In 2011, Kyma landed a deal to will work with Veeco Instruments on a next generation LED manufacturing project funded by a $4 million award from the U.S. Department of Energy.   Less than 6 months ago in October, Kyma received an additional $3.2M of venture capitalist funding.

Screenshot - 2_18_2014 , 9_06_34 PM

This morning GTAT announced they had acquired exclusive rights from Kyma Technologies, Inc. for its plasma vapor deposition (PVD) process technology and know-how.  Based on the reading the announcement I believe GT will be paying Kyma a royalty fee based on units sold or a similar methodology.  I thought it would be interesting to compare the press releases from both companies GTAT and Kyma to see if there are any differences and sure enough there are!  Announcement from Kyma & Announcement from GTAT.

Analysis of opening statement: GTAT makes it very clear that they have acquired “exclusive rights” for Kyma’s plasma vapor deposition (PVD) process technology and “know-how”.    It sounds like GTAT not only gets the rights to the PVD system but also the IP (intellectual property) behind the technology.  Based on this language it appears GT will be paying Kyma an ongoing royalty fee for each PVD tool sold.  Kyma on the other hand only indicates that it has “licensed” the technology but does not state that it is an exclusive deal.

Opening statement from GTAT’s announcement is below:

GT Advanced Technologies (Nasdaq:GTAT) today announced that it has acquired exclusive rights from Kyma Technologies, Inc. for its plasma vapor deposition (PVD) process technology and know-how. The PVD of nano-columns (PVDNC™) technology developed by Kyma deposits a high-quality growth initiation layer of aluminum nitride (AlN) on wafers prior to gallium nitride (GaN) deposition. GT plans to commercialize a PVD tool that will complement its hydride vapor phase epitaxy (HVPE) system, which is currently in development. The combined offering will provide LED manufacturers with a higher throughput, lower cost solution to produce gallium nitride (GaN) templates on patterned or planar wafers. GT already has a high volume prototype tool incorporating Kyma’s PVDNC technology and expects to offer a production-ready tool in the first half of 2015.

Opening statement from Kyma is below:

Kyma Technologies, Inc., a leading supplier of advanced materials solutions that promote safety and energy efficiency, announced today that it has licensed its nitride semiconductor plasma vapor deposition of nanocolumns (PVDNC™) technology to GT Advanced Technologies.

Kyma has a rich history of advancing PVDNC™ technology to create a cost-effective nanocolumnar crystalline AlN nucleation layer on flat sapphire and silicon substrates as well as on patterned sapphire substrates. The nanocolumnar AlN presents an excellent surface for subsequent nucleation and growth of GaN buffer layers which are important for GaN LEDs and power electronics. Kyma has offered PVDNC™ AlN templates to the market for many years and also employs such templates as a starting material for growing bulk and thin film crystalline GaN by hydride vapor phase epitaxy (HVPE).

Analysis of closing statement: GTAT states they manufacturers will be able to “increase the throughput of their existing LED production lines and lower the capital expenditures…” while Kyma says that the (PVDNC) technology has the “potential to double the throughput of today’s MOCVD tools.”  It’s very interesting that GTAT went light on the technology benefits but Kyma wanted to make sure everyone knew this could double the throughput.

Closing paragraph from GTAT is below:

Today, GaN deposition on epi wafers is done in slower and more expensive MOCVD tools. By utilizing the combined PVD and HVPE processes to create low cost GaN templates, manufacturers will be able to increase the throughput of their existing LED production lines and lower their capital expenditures because they will need fewer MOCVD tools.

Closing paragraph from Kyma is below:

PVDNC™ technology is an excellent complement to GT’s recently announced move into HVPE equipment. The combination of PVDNC™ AlN nucleation layers and HVPE GaN buffer layers has the potential to double the throughput of today’s MOCVD tools and to improve the performance and yield of devices. The result is higher throughput of improved devices made at lower fabrication cost, a triple win for the customer.

One more omission from the GTAT announcement completely that was in Kyma’s announcement was but “also into the nascent market for nitride based power electronics”.  GTAT only mentions this deal in relation to LED but it may be one of the “secret” weapons for Power Electronics which is one of the 4 business swim lanes.  Slides pulled from the recent corporate overview support my theory above that this deal with Kyma is for LED as well as Power Electronics related to Silicon Carbide Systems as well as end market Power Systems for Electric Vehicles.

2014 Slide 4

2014 Slide 4

2014 Slide 4

2014 Slide 4

The Kyma100 HVPE Specs are below

Kyma100 HVPE System Specs

Kyma100 HVPE System Specs

This is a interesting fact sheet from Kyma and their focus on Support of Wide Bandgap Semiconductor Power Electronics including  Silicon Carbide (SiC).

Screenshot - 2_18_2014 , 9_14_33 PM

My takeaways:

  • GTAT acquired exclusive rights for Kyma’s PVD Tool and IP (Intellectual Property) associated with it
  • PVD tool can double the throughput of today’s MOCVD tools
  • GT plans to commercialize this tool beginning in 2015 partnered with their HVPE system in development for LED
  • PVD tool will also benefit SiC and Nitride Based Power Electronics (Power Systems for Electric Vehicles)